EasyManua.ls Logo

HP 50G

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Page 16-14
Θ Shift theorem for a shift to the right. Let F(s) = L{f(t)}, then
L{f(t-a)}=e
–as
L{f(t)} = e
–as
F(s).
Θ Shift theorem for a shift to the left
. Let F(s) = L{f(t)}, and a >0, then
Θ Similarity theorem
. Let F(s) = L{f(t)}, and a>0, then L{f(at)} = (1/a)F(s/a).
Θ Damping theorem
. Let F(s) = L{f(t)}, then L{e
–bt
f(t)} = F(s+b).
Θ Division theorem
. Let F(s) = L{f(t)}, then
Θ Laplace transform of a periodic function of period T
:
Limit theorem for the initial value: Let F(s) = L{f(t)}, then
Limit theorem for the final value: Let F(s) = L{f(t)}, then
Example 4
– Using the convolution theorem, find the Laplace transform of
(f*g)(t), if f(t) = sin(t), and g(t) = exp(t). To find F(s) = L{f(t)}, and G(s) = L{g(t)},
use: ‘SIN(X)’ ` LAP μ. Result, ‘1/(X^2+1)’, i.e., F(s) = 1/(s
2
+1).
Also, ‘EXP(X)’ ` LAP. Result, ‘1/(X-1)’, i.e., G(s) = 1/(s-1). Thus, L{(f*g)(t)} =
F(s)G(s) = 1/(s
2
+1)1/(s-1) = 1/((s-1)(s
2
+1)) = 1/(s
3
-s
2
+s-1).
{}
==
)})(*{()()(
0
tgfduutguf
t
LL
)()()}({)}({ sGsFtgtf =LL
.)()()}({
0
=+
a
stas
dtetfsFeatfL
=
s
duuF
t
tf
.)(
)(
L
=
T
st
sT
dtetf
e
tf
0
.)(
1
1
)}({L
)].([lim)(lim
0
0
sFstff
st
==

Table of Contents

Other manuals for HP 50G

Related product manuals