EasyManuals Logo

HP 50G User Manual

HP 50G
887 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #497 background imageLoading...
Page #497 background image
Page 16-20
Example 3 – Consider the equation
d
2
y/dt
2
+y = δ(t-3),
where δ(t) is Dirac’s delta function.
Using Laplace transforms, we can write:
L{d
2
y/dt
2
+y} = L{δ(t-3)},
L{d
2
y/dt
2
} + L{y(t)} = L{δ(t-3)}.
With
Delta(X-3) ` LAP , the calculator produces EXP(-3*X), i.e., L{δ(t-3)}
= e
–3s
. With Y(s) = L{y(t)}, and L{d
2
y/dt
2
} = s
2
Y(s) - sy
o
– y
1
, where y
o
= h(0)
and y
1
= h’(0), the transformed equation is s
2
Y(s) – sy
o
– y
1
+ Y(s) = e
–3s
. Use
the calculator to solve for Y(s), by writing:
‘X^2*Y-X*y0-y1+Y=EXP(-3*X)` ‘Y’ ISOL
The result is ‘Y=(X*y0+(y1+EXP(-(3*X))))/(X^2+1)’.
To find the solution to the ODE, y(t), we need to use the inverse Laplace
transform, as follows:
OBJ ƒ ƒ Isolates right-hand side of last expression
ILAP μ Obtains the inverse Laplace transform
The result is y1*SIN(X)+y0*COS(X)+SIN(X-3)*Heaviside(X-3)’.
Note: Using the two examples shown here, we can confirm what we indicated
earlier, i.e., that function ILAP uses Laplace transforms and inverse transforms to
solve linear ODEs given the right-hand side of the equation and the
characteristic equation of the corresponding homogeneous ODE.

Table of Contents

Other manuals for HP 50G

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the HP 50G and is the answer not in the manual?

HP 50G Specifications

General IconGeneral
Digits33 digits
Battery typeCR2032
TypeScientific
Form factorPocket
Weight and Dimensions IconWeight and Dimensions
Weight220 g
Dimensions (WxDxH)87 x 184 x 23.5 mm

Related product manuals