EasyManua.ls Logo

Texas Instruments C2000 - Floating-Point

Texas Instruments C2000
342 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Floating-Point
C2000 Microcontroller Workshop - Numerical Concepts 8 - 13
Floating-Point
IEEE-754 Single Precision Floating-Point
Example: 0x41200000 = 0 100 0001 0 010 0000 0000 ... 0000 b
s e = 130 f = 2
-2
= 0.25
Case 3 v = (-1
0
)*2
(130-127)
*1.25 = 10.0
s eeeeeeee fffffffffffffffffffffff
031 30 23 22
23 bit mantissa (fraction)8 bit exponent
1 bit sign
Case 1: if e = 255 and f 0, then v = NaN
Case 2: if e = 255 and f = 0, then v = [(-1)
s
]*infinity
Case 3: if 0 < e < 255, then v = [(-1)
s
]*[2
(e-127)
]*(1.f)
Case 4: if e = 0 and f 0, then v = [(-1)
s
]*[2
(-126)
]*(0.f)
Case 5: if e = 0 and f = 0, then v = [(-1)
s
]*0
Advantage Exponent gives large dynamic range
Disadvantage Precision of a number depends on its exponent
Normalized
values
Number Line Insight
Floating-Point:
0
+
-
0
+
-
Non-uniform distribution
Precision greatest near zero
Less precision the further you get from zero

Table of Contents

Other manuals for Texas Instruments C2000

Related product manuals