EasyManua.ls Logo

Texas Instruments TI-89 - Page 519

Texas Instruments TI-89
623 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
502 Appendix A: Functions and Instructions
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 502 of 132
sin
ê
(squareMatrix1)
squareMatrix
Returns the matrix inverse sine of
squareMatrix1
. This is
not
the same as
calculating the inverse sine of each element.
For information about the calculation
method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode and Rectangular
complex format mode:
sin
ê
([1,5,3;4,2,1;6,
ë
2,1])
¸
ë
.164…
ì
.064…
ø
i
1.490…
ì
2.105…
ø
i
.725…
ì
1.515…
ø
i
.947…
ì
.778…
ø
i
2.083…
ì
2.632…
ø
i
ë
1.790…+1.271…
ø
i
sinh()
MATH/Hyperbolic menu
sinh(expression1)
expression
sinh(list1)
list
sinh (expression1)
returns the hyperbolic sine
of the argument as an expression.
sinh (list)
returns a list of the hyperbolic sines
of each element of
list1
.
sinh(1.2)
¸
1.509
...
sinh({0,1.2,3.})
¸
{0 1.509
...
10.017
...
}
sinh(squareMatrix1)
squareMatrix
Returns the matrix hyperbolic sine of
squareMatrix1
. This is
not
the same as
calculating the hyperbolic sine of each
element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
sinh([1,5,3;4,2,1;6,
ë
2,1])
¸
360.954 305.708 239.604
352.912 233.495 193.564
298.632 154.599 140.251
sinh
ê
()
MATH/Hyperbolic menu
sinh
ê
(expression1)
expression
sinh
ê
(list1)
list
sinh
ê
(expression1)
returns the inverse
hyperbolic sine of the argument as an
expression.
sinh
ê
(list1)
returns a list of the inverse
hyperbolic sines of each element of
list1
.
sinh
ê
(0)
¸
0
sinh
ê
({0,2.1,3})
¸
{0 1.487
...
sinh
ê
(3)}
sinh
ê
(squareMatrix1)
squareMatrix
Returns the matrix inverse hyperbolic sine of
squareMatrix1
. This is
not
the same as
calculating the inverse hyperbolic sine of
each element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
sinh
ê
([1,5,3;4,2,1;6,
ë
2,1])
¸
.041… 2.155… 1.158…
1.463… .926… .112…
2.750…
ë
1.528… .572…

Table of Contents

Other manuals for Texas Instruments TI-89

Related product manuals