EasyManua.ls Logo

Renesas M16C Series User Manual

Renesas M16C Series
380 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #282 background imageLoading...
Page #282 background image
CRC Calculation Circuit
M30240 Group
Rev.1.00 Sep 24, 2003 Page 264 of 360
Figure 2.109: Operation of CRC Calculation Circuit
b15 b0
(1) Setting 000016
CRC data register CRCD
[03BD
16, 03BC16]
b0b7
b15
b0
(2) Setting 0116
CRC input register CRCIN
[03BE
16]
2 cycles
After CRC calculation is complete
CRC data register CRCD
[03BD
16, 03BC16]
1189
16
Stores CRC code
b0b7
b15 b0
(3) Setting 2316
CRC input register CRCIN
[03BE
16]
After CRC calculation is complete
CRC data register CRCD
[03BD
16, 03BC16]
0A41
16
Stores CRC code
The code resulting from sending 01
16 in LSB first mode is (1000 0000). Thus the CRC code in the generating polynomial,
(X
16
+ X
12
+ X
5
+ 1), becomes the remainder resulting from dividing (1000 0000) X
16
by (1 0001 0000 0010 0001) in
conformity with the modulo-2 operation.
Thus the CRC code becomes (1001 0001 1000 1000). Since the operation is in LSB first mode, the (1001 0001 1000 1000)
corresponds to 1189
16 in hexadecimal notation. If the CRC operation in MSB first mode is necessary in the CRC operation
circuit built in the M16C, switch between the LSB side and the MSB side of the input-holding bits, and carry out the CRC
operation. Also switch between the MSB and LSB of the result as stored in CRC data.
1 0001 0000 0010 0001
1000 0000 0000 0000 0000 0000
1000 1000 0001 0000 1
1000 0001 0000 1000 0
1000 1000 0001 0000 1
1001 0001 1000 1000
1000 1000
LSB
MSB
LSB MSB
98 1 1
Modulo-2 operation is
operation that complies
with the law given below.
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0
-1 = 1

Table of Contents

Question and Answer IconNeed help?

Do you have a question about the Renesas M16C Series and is the answer not in the manual?

Renesas M16C Series Specifications

General IconGeneral
Architecture16-bit
CoreM16C
Instruction Set ArchitectureCISC
Flash MemoryUp to 512 KB
Operating Voltage2.7V to 5.5V
Operating Temperature Range-40°C to +85°C
Package TypesLQFP, QFP
TimersMultiple 16-bit timers
ADC10-bit
Communication InterfacesUART, SPI, I2C
InterruptsMultiple interrupt sources

Summary

Chapter 1: Hardware

1.1 Description

Overview of the M30240 group as a single-chip USB peripheral microcontroller based on M16C family.

1.1.1 Features

Lists the key features of the M30240 group, including CPU, USB capabilities, memory, voltage, and peripherals.

1.1.3 Pin Configuration

Shows the pin configuration (top view) of the M30240 group, detailing each pin's name, I/O, and basic function.

1.1.4 Block Diagram

Presents a block diagram illustrating the internal structure and major components of the M30240 group.

1.1.5 Performance outline

Details the performance specifications of the M30240 group, including instruction count, memory capacity, and I/O ports.

1.1.6 Pin Description

Provides a detailed description of each pin of the M30240 microcontroller, including its name, I/O type, and functions.

CHAPTER 2: PERIPHERAL FUNCTIONS USAGE

2.1 Protect

Explains the protect function to prevent unintended changes to important registers when a program runs away.

2.2 Timer A

Provides an overview and detailed operation modes of the 16-bit Timer A, including timer, event counter, and PWM modes.

2.3 Timer B

Details the operation and registers of Timer B, a 16-bit timer that operates only in timer mode.

2.4 Clock-Synchronous Serial I/O

Explains clock-synchronous serial communication, including transmission/reception formats, transfer rates, and error detection.

2.5 Clock-Asynchronous Serial I/O (UART)

Covers UART operations, including transmission/reception formats, transfer rates, error detection, and functions like SIM interface compliance.

2.6 A-D Converter

Describes the A-D converter, its modes of operation, conversion clock, conversion time, and related registers.

2.7 DMAC

Explains the DMAC (Direct Memory Access Controller) for data transfer between memory and peripherals without CPU intervention.

2.10 Address Match Interrupt

Explains the address match interrupt functionality for simplified debugging, including enable/disable and timing.

2.11 Key-Input Interrupt

Describes the key-input interrupt, which is generated by falling edges on Port 0 or Port 1 pins used as input.

2.12 Power Control

Explains power control modes (Normal, Wait, Stop) for reducing CPU power consumption by stopping oscillators or clocks.

2.13 Programmable I/O Ports

Details the programmable I/O ports, including direction registers, port registers, pull-up control, and high drive capacity.

Chapter 3 Universal Serial Bus

3.1 Frequency Synthesizer

Explains how to set up and use the frequency synthesizer to generate the 48MHz clock for USB and DC-DC converter power.

3.2 Universal Serial Bus

Provides an overview of the Universal Serial Bus (USB) features, including specification compatibility, error handling, and transfer types.

3.2.2 USB Related Registers

Lists and describes USB-related registers for controlling USB functionality, including control, status, and enable registers.

3.2.7 USB Interrupts

Details the types of USB interrupts (Function, Reset, Resume, SOF, Suspend) and their handling via enable flags and priority levels.

3.2.8 USB Function Control Unit Initialization

Outlines the initialization routine for the USB Function Control Unit, including frequency synthesizer setup and endpoint initialization.

3.2.9 USB Control Transfers and SET_ADDRESS Request

Explains USB control transfers, the SET_ADDRESS request, and procedures for setting the device address.

Chapter 4 Interrupts

4.1 Overview of Interrupts

Provides an overview of interrupt types, including software, hardware, special, and peripheral I/O interrupts.

4.1.1 Type of Interrupts

Classifies interrupts into maskable and non-maskable types, detailing software and hardware interrupt categories.

4.1.2 Interrupt Vector Tables

Describes interrupt vector tables, including fixed and variable types, and lists interrupts assigned to fixed vector tables.

4.1.3 Interrupt Control

Explains interrupt control registers, interrupt request bits, enable flags, and priority levels for managing interrupts.

4.1.4 Interrupt Sequence

Details the sequence of operations when an interrupt occurs, including saving registers and processor control flow.

4.1.5 Multiple Interrupts

Explains how multiple interrupts are handled, including priority levels and interrupt acceptance conditions.

Chapter 5 Built-in PROM Version

5.1 Built-in PROM Version

Introduces the built-in PROM version, its functions, and available types (OTP and EPROM).

5.1.1 Outline

Outlines the capabilities of the built-in PROM version, including programming methods and suitability for different production volumes.

5.2 EPROM version

Describes the EPROM version, its operating modes (Normal, EPROM), and related pins.

5.2.1 EPROM mode pins

Lists pin functions specifically for the EPROM mode, detailing their roles in programming and verification.

5.2.2 Input/Output signals

Explains the input/output signals for Read, Program, and Erase operations in EPROM mode.

5.2.3 Algorithm Programming

Details the step-by-step algorithm for programming the built-in PROM, including voltage settings and pulse application.

5.3 Usage Precaution

Provides precautions for using built-in PROM versions, including handling of high voltage and protection of the EPROM window.

5.3.1 Built-in PROM versions

Offers specific cautions for programming built-in PROM versions, emphasizing voltage and power-on sequences.

5.3.2 One-time PROM versions

Highlights that OTP versions are not tested/screened, recommending programming and testing for reliability.

5.3.3 EPROM versions

Advises on protecting the EPROM window from light and cleaning it before erasure for optimal performance.

Chapter 6 Standard Characteristics

6.1 Standard DC Characteristics

Presents standard DC characteristics of the M30240EC, including output currents and voltage ratings.

Related product manuals