Appendix C TriStar II 3020
C-20 302-42828-01 - Dec 2012
where:
D
A
= molecular diameter (Å) from the Horvath-Kawazoe Physical Properties
dialog
D
S
= diameter of sample atom (Å) from the Horvath-Kawazoe Physical dialog
L = pore width (nucleus to nucleus) (Å)
P = equilibrium pressure (mmHg)
Po = saturation pressure (mmHg)
IP = interaction parameter (10
-43
ergs-cm
4
) from the Horvath-Kawazoe Report
Options dialog
Cylinder Pore Geometry (Saito/Foley)
P
Po
-------
ln
3
4
---
K
RT
-------
IP 10
32
JA
4
/J cm
4
d
0
4
---------------------------------------------------
1
k 1+
------------
1
d
0
r
p
-----
–
2k
21
32
------
k
d
0
r
p
-----
10
k
d
0
r
p
-----
4
–
k 0=
=
When you use the Saito-Foley
10
method, the following equation is solved for each value of P. The
value of L is determined when the solved-for relative pressure is within 0.1% of the collected absolute
pressure.
where
K
= Avogadro’s number (6.023 x 10
23
)
R = gas constant (8.31441 x 10
7
ergs/mole K)
T = analysis bath temperature (K), from an entered or calculated
value on the Po and Temperature Options dialog
L = pore width (nucleus to nucleus) (Å)
P = equilibrium pressure (mmHg)
Po = saturation pressure (mmHg)
IP = interaction parameter (10
-43
ergs-cm
4
) from the Horvath-Kawazoe Report
Options dialog
d
0
=
where:
D
A
= molecular diameter (Å) from the Horvath-Kawazoe Physical Properties
dialog
D
S
= diameter of sample atom (Å) from the Horvath-Kawazoe Physical dialog
k
=
k
=
r
p
= radius of the cylindrical pore,
D
A
D
S
A+
2
-----------------------------
4.5– k–
k
--------------------
2
k 1–
,
0
1.0=
1.5– k–
k
--------------------
2
k 1–
,
0
1.0=