EasyManua.ls Logo

NT-MDT Solver Next - Page 162

NT-MDT Solver Next
214 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Solver NE
X
154
8. Launc
When the
measurem
e
Curves of
value to th
7.5.2.2.
Using the
amplitude.
The possi
b
mode whe
scanner z-
t
decrease i
s
Δ
Amplitu
d
This assu
m
absolutely
X
T SPM. Inst
r
h
measure
m
measure
m
e
nt point.
A
display rel
a
e To value
Calib
r
measured
b
ility of su
c
n the prob
e
t
ube result
s
s
considere
d
d
e =
Δ
Hei
g
m
ption hol
d
rigid. In c
a
r
uction Man
u
m
ents by cli
c
m
ents com
p
A
typical pl
o
Fi
g
a
tions acqu
i
in forward
(
r
ation of
Ma
g(
Hei
g
c
h calibrati
e
starts “ta
p
s
in limitati
o
d
equal to t
h
g
ht.
d
s if the Q-
f
a
se of stan
d
u
al
c
king the b
u
p
lete, the
o
t of the
Ma
g
. 7-143. Sp
e
i
red with th
e
(
red curve)
Cantile
v
th
)
curve
on is base
d
p
ping” the
s
o
n of the c
a
h
e scanner
e
f
actor of th
e
d
ard probes
u
tton
Viewing
A
g(
Z
)
relati
o
e
ctroscopy r
e
e
argument
and in bac
k
v
er Osci
ll
one can c
d
on the fo
l
s
ample sur
f
a
ntilever o
s
e
xtension (
Δ
e
system is
intended f
o
.
A
rea displ
a
o
n at a poin
t
e
sults
varying in
k
ward (blu
e
ll
ations
A
alibrate th
e
l
lowing as
s
f
ace any fu
r
s
cillations a
Δ
Height
):
sufficientl
y
o
r the semi
c
a
ys a plot
t
is shown i
n
the range
fr
e
curve) dir
e
A
mplitu
d
e
cantileve
s
umption. I
n
r
ther exten
s
mplitude.
T
y
high and
c
ontact mo
d
for the l
a
n
Fig. 7-14
3
fr
om the Fr
o
e
ctions.
d
e
r oscillati
o
n
semicont
a
s
ion of on
t
T
he amplit
u
(
the sampl
e
d
es with ri
g
a
st
3
.
o
m
o
ns
a
ct
t
he
u
de
(
1)
e
is
g
id

Table of Contents