EasyManua.ls Logo

ABB REL650 - Page 635

ABB REL650
942 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
D
A
1 p( ) Z
A
Z
AL
Z
B
+ +( ) Z
B
+×
2 Z
A
Z
L
2 Z
B
×+ +×
-----------------------------------------------------------------------------
=
EQUATION101 V1 EN-US (Equation 85)
The K
N
compensation factor for the double line becomes:
K
N
Z
0L
Z
1L
3 Z
1L
×
------------------------
Z
0M
3 Z
1L
×
-----------------
I
0P
I
0A
-------
×+=
EQUATION102 V1 EN-US (Equation 86)
From these equations it can be seen, that, if Z
0m
= 0, then the general fault location
equation for a single line is obtained. Only the distribution factor differs in these
two cases.
Because the D
A
distribution factor according to equation
82 or 84 is a function of
p, the general equation 84 can be written in the form:
p
2
p K
1
K
2
K
3
R
F
×+× 0=
EQUATION103 V1 EN-US (Equation 87)
Where:
K
1
U
A
I
A
Z
L
×
----------------
Z
B
Z
L
Z
A DD
+
---------------------------
1+ +=
EQUATION104 V1 EN-US (Equation 88)
K
2
U
A
I
A
Z
L
×
----------------
Z
B
Z
L
Z
A DD
+
---------------------------
1+
è ø
æ ö
×=
EQUATION105 V1 EN-US (Equation 89)
K
3
I
FA
I
A
Z
L
×
----------------
Z
A
Z
B
+
Z
1
Z
A DD
+
---------------------------
1+
è ø
æ ö
×=
EQUATION106 V1 EN-US (Equation 90)
and:
Z
ADD
= Z
A
+ Z
B
for parallel lines.
I
A
, I
FA
and U
A
are given in the above table.
K
N
is calculated automatically according to equation
86.
Z
A
, Z
B
, Z
L
, Z
0L
and Z
0M
are setting parameters.
For a single line, Z
0M
= 0 and Z
ADD
= 0. Thus, equation 87 applies to both single
and parallel lines.
Equation
87 can be divided into real and imaginary parts:
1MRK 506 382-UEN A Section 14
Monitoring
Line distance protection REL650 2.2 IEC 629
Technical manual

Table of Contents

Other manuals for ABB REL650

Related product manuals