Full Command and Function Reference 3-181
For a real argument that is an odd-integer multiple of 90 in Degrees mode, an Infinite Result
exception occurs. If flag –22 is set (no error), the sign of the result (MAXR) matches that of the
argument.
For complex arguments:
xiy+()tan
sin()
cos()iysinh()ycosh()+
hsin
2
y cos
2
x+
-------------------------------------------------------------------------------=
If the argument for TAN is a unit object, then the specified angular unit overrides the angle
mode to determine the result. Integration and differentiation, on the other hand, always observe
the angle mode. Therefore, to correctly integrate or differentiate expressions containing TAN
with a unit object, the angle mode must be set to Radians (since this is a “neutral” mode).
Access: U
Flags: Numerical Results (-3), Angle Mode (-17, -18), Inifinite Result Exception (-22)
Input/Output:
Level 1/Argument 1 Level 1/Item 1
z
→
tan z
'symb'
→
'TAN(symb)'
x_unit
angular
tan (x_unit
angular
)
See also: ATAN, COS, SIN
TAN2CS2
CAS: Replace tan(x) terms in expressions with (1-cos(2x))/sin(2x) terms.
TAN2SC
CAS: Replace tan(x) terms in expressions with sin(x)/cos(x).
TAN2SC2
CAS: Replace tan(x) terms in expressions with sin(2x)/1+cos(2x) terms.
TANH
Type: Analytic function
Description: Hyperbolic Tangent Analytic Function: Returns the hyperbolic tangent of the argument.
For complex arguments,
xiy+()tanh
2
sinh i 2ysin+
2xcosh 2ycos+
---------------------------------------=
Access: …Ñ HYPERBOLIC TANH (Ñ is the right-shift of the 8key).
!´
HYPERBOLIC TANH ( ´ is the left-shift of the Pkey).
Flags: Numerical Results (-3)
Input/Output:
Level 1/Argument 1 Level 1/Item 1
z
→
tanh z
'symb'
→
'TANH(symb)'
See also: ATANH, COSH, SINH
TAYLOR0
CAS: Perform a fourth-order Taylor expansion of an expression at x = 0.
TAYLR
Type: Command
Description: Taylor Polynomial Command: Calculates the nth order Taylor polynomial of symb in the variable
global.