Computer Algebra Commands 4-45
{0: [1,-1]}, 2: [1,1]}
[0,2]}
KER
Type: Command
Description: Computes the basis of the kernel of a linear application f.
Access: Matrices, !Ø LINEAR APPL
Input: A matrix representing a linear application f in terms of the standard basis.
Output: A list of vectors representing a basis of the kernel (also called the nullspace) of f.
Flags: Exact mode must be set (flag –105 clear).
Numeric mode must not be set (flag -3 clear).
Example: Find the kernel of
112
213
314
Command: KER([1,1,2][2,1,3][3,1,4])
Result: {[1,1,-1]}
See also: BASIS, IMAGE
LAGRANGE
Type: Command
Description: Returns the interpolating polynomial of minimum degree for a set of pairs of values. For two
pairs, DROITE will fit a straight line.
Access: Arithmetic,
!ÞPOLY L
Input: A two × n matrix of the n pairs of values.
Output: The polynomial that results from the Lagrange interpolation of the data.
Flags: Exact mode must be set (flag –105 clear).
Numeric mode must not be set (flag -3 clear).
Radians mode must be set (flag –17 set).
Example: Find an interpolating polynomial for the data (1,6), (3,7), (4,8), (2,9)
Command:
LAGRANGE([[1,3,4,2][6,7,8,9]])
Result:
8x
3
63x
2
– 151x 60–+
6
--------------------------------------------------------
See also: DROITE
LAP
Type: Function
Description: Performs a Laplace transform on an expression with respect to the current default variable.
Access: Calculus, !Ö DIFFERENTIAL EQNS
Input: An expression.
Output: The Laplace transform of the expression.
Flags: Exact mode must be set (flag –105 clear).
Numeric mode must not be set (flag -3 clear).
Radians mode must be set (flag –17 set).