EasyManua.ls Logo

HP 48GII

HP 48GII
653 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Full Command and Function Reference 3-193
Γ
z
2
---
⎝⎠
⎛⎞
z
2
---1
⎝⎠
⎛⎞
!=
Description: Upper Snedecor's F Distribution Command: Returns the probability utpf(n
1
, n
2
, x) that a
Snedecor
's F random variable is greater than x, where n
1
and n
2
are the numerator and
denominator degrees of freedom of the F distribution.
The defining equations for utpf(n
1
, n
2
, x) are these:
For x 0:
n
1
n
2
-----
⎝⎠
⎛⎞
n
1
2
-----
Γ
n
1
n
2
+
2
-----------------
⎝⎠
⎛⎞
Γ
n
1
2
-----
⎝⎠
⎛⎞
Γ
n
2
2
-----
⎝⎠
⎛⎞
------------------------------
t
n
1
2
2
--------------
x
1
n
1
n
2
-----
⎝⎠
⎛⎞
t+
n
1
n
2
+()
2
-----------------------
dt
For x < 0:
u
t
p
f
n
1
n
2
x
,,()1=
For any value z, , where ! is the hp49g+/hp48gII factorial command.
The values n
1
and n
2
are rounded to the nearest integers and, when rounded, must be positive.
Access:
L PROBABILITY L UTPF ( ´ is the left-shift of the Pkey).
Input/Output:
Level 3/Argument 1 Level 2/Argument 2 Level 1/Argument 3 Level 1/Item 1
n
1
n
2
x
utpf(n
1
,n
2
,x)
See also: UTPC, UTPN, UTPT
UTPN
Type: Command
Description: Upper Normal Distribution Command: Returns the probability utpn(m, v, x) that a normal
random variable is greater than x, where m and v are the mean and variance, respectively, of the
normal distribution.
For all x and m, and for v > 0, the defining equation is this:
utpn m v x,,()
1
2πv
-------------
e
tm()
2
2v
- ------ ---- -------
td
x
=
For v = 0, UTPN returns 0 for x m, and 1 for x < m.
Access:
L PROBABILITY L UTPN ( ´ is the left-shift of the Pkey).
Input/Output:
Level 3/Argument 1 Level 2/Argument 2 Level 1/Argument 3 Level 1/Item 1
m v x
utpn(m,v,x)
See also: UTPC, UTPF, UTPT
UTPT
Type: Command
Description: Upper Student
's t Distribution Command: Returns the probability utpt(n, x) that a Student's t
random variable is greater than x, where n is the number of degrees of freedom of the
distribution.
The following is the defining equation for all x:

Table of Contents

Other manuals for HP 48GII

Related product manuals