EasyManua.ls Logo

Campbell CR850 - Trigonometric Functions; Derived Functions; Intrinsic Functions; Table 114. Derived Trigonometric Functions

Campbell CR850
566 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Appendix A. CRBasic Programming Instructions
474
A.6.6 Trigonometric Functions
A.6.6.1 Derived Functions
Table Derived Trigonometric Functions (p. 474) is a list of trigonometric functions
that can be derived from functions intrinsic to CRBasic.
Table 114. Derived Trigonometric Functions
Function CRBasic Equivalent
Secant Sec = 1 / Cos(X)
Cosecant Cosec = 1 / Sin(X)
Cotangent Cotan = 1 / Tan(X)
Inverse Secant Arcsec = Atn(X / Sqr(X * X - 1)) + Sgn(Sgn(X) - 1) * 1.5708
Inverse Cosecant Arccosec = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * 1.5708
Inverse Cotangent Arccotan = Atn(X) + 1.5708
Hyperbolic Secant HSec = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine HArcsin = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent HArctan = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HArcsec = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent HArccotan = Log((X + 1) / (X - 1)) / 2
A.6.6.2 Intrinsic Functions
ACOS
Returnsthearccosineofanumber.
Syntax
x = ACOS(source)
ASIN
Returnsthearcsinofanumber.
Syntax
x = ASIN(source)
ATN
Returnsthearctangentofanumber.
Syntax
x = ATN(source)
ATN2
Returnsthearctangentofy/x.
Syntax
x = ATN(y , x)

Table of Contents

Related product manuals