EasyManuals Logo
Home>FLIR>Thermal cameras>T Series

FLIR T Series User Manual

FLIR T Series
266 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #234 background imageLoading...
Page #234 background image
The factor 10
-6
is used since spectral emittance in the curves is expressed in
Watt/m
2
, μm.
Planck’s formula, when plotted graphically for various temperatures, produces a
family of curves. Following any particular Planck curve, the spectral emittance is zero
at λ = 0, then increases rapidly to a maximum at a wavelength λ
max
and after passing
it approaches zero again at very long wavelengths. The higher the temperature, the
shorter the wavelength at which maximum occurs.
10327103;a4
Figure 33.4 Blackbody spectral radiant emittance according to Planck’s law, plotted for various absolute
temperatures. 1: Spectral radiant emittance (W/cm
2
× 10
3
(μm)); 2: Wavelength (μm)
33.3.2 Wien’s displacement law
By differentiating Planck’s formula with respect to λ, and finding the maximum, we
have:
This is Wien’s formula (after Wilhelm Wien, 1864–1928), which expresses mathemati-
cally the common observation that colors vary from red to orange or yellow as the
temperature of a thermal radiator increases. The wavelength of the color is the same
as the wavelength calculated for λ
max
. A good approximation of the value of λ
max
for
a given blackbody temperature is obtained by applying the rule-of-thumb 3 000/T
222 Publ. No. 1558792 Rev. a460 ENGLISH (EN) July 1, 2010
33 Theory of thermography

Table of Contents

Other manuals for FLIR T Series

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the FLIR T Series and is the answer not in the manual?

FLIR T Series Specifications

General IconGeneral
BrandFLIR
ModelT Series
CategoryThermal cameras
LanguageEnglish

Related product manuals