EasyManuals Logo

D-Link xStack DGS-3120 Series Reference Guide

D-Link xStack DGS-3120 Series
509 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #406 background imageLoading...
Page #406 background image
xStack® DGS-3120 Series Layer 3 Managed Gigabit Ethernet Switch Web UI Reference Guide
396
ingress ARP and IP broadcast packets and packets from un-trusted IP addresses for five seconds. After another
five-second checking interval arrives, the Switch will again check the ingress flow of packets. If the flooding has
stopped, the Switch will again begin accepting all packets. Yet, if the checking shows that there continues to be too
many packets flooding the Switch, it will stop accepting all ARP and IP broadcast packets and packets from un-
trusted IP addresses for double the time of the previous stop period. This doubling of time for stopping these
packets will continue until the maximum time has been reached, which is 320 seconds and every stop from this
point until a return to normal ingress flow would be 320 seconds. For a better understanding, please examine the
following example of the Safeguard Engine.
Figure 8-92 Mapping QoS on the Switch
For every consecutive checking interval that reveals a packet flooding issue, the Switch will double the time it will
discard ingress ARP and IP broadcast packets and packets from the illegal IP addresses. In the example above,
the Switch doubled the time for dropping ARP and IP broadcast packets when consecutive flooding issues were
detected at 5-second intervals. (First stop = 5 seconds, second stop = 10 seconds, third stop = 20 seconds) Once
the flooding is no longer detected, the wait period for dropping ARP and IP broadcast packets will return to 5
seconds and the process will resume.
In Fuzzy mode, once the Safeguard Engine has entered the Exhausted mode, the Safeguard Engine will decrease
the packet flow by half. After returning to Normal mode, the packet flow will be increased by 25%. The switch will
then return to its interval checking and dynamically adjust the packet flow to avoid overload of the Switch.
NOTICE: When Safeguard Engine is enabled, the Switch will allot bandwidth to various traffic flows
(ARP, IP) using the FFP (Fast Filter Processor) metering table to control the CPU utilization
and limit traffic. This may limit the speed of routing traffic over the network.
Users can enable the Safeguard Engine or configure advanced Safeguard Engine settings for the Switch.
To view this window, click Security > Safeguard Engine Settings as shown below:

Table of Contents

Other manuals for D-Link xStack DGS-3120 Series

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the D-Link xStack DGS-3120 Series and is the answer not in the manual?

D-Link xStack DGS-3120 Series Specifications

General IconGeneral
MAC Address Table16K entries
Ports10/100/1000BASE-T ports
VLANs4094
Jumbo FrameUp to 9KB
Power SupplyInternal power supply (depending on model)
Power over Ethernet (PoE)No
Layer 3 FeaturesRIP
Quality of Service (QoS)8 queues per port, DiffServ
Security FeaturesACLs
ManagementWeb-based, CLI, SNMP
Operating Temperature0°C to 40°C
Storage Temperature-40°C to 70°C
SFP PortsCombo 10/100/1000BASE-T/SFP ports and/or dedicated SFP/SFP+ ports (depending on model)

Related product manuals