Appendix for Lorrca® MaxSis
Lorrca Maxsis User Manual Page 215
Version 5.04 MRN-231-EN
11.6.3. References
1. Ahn S.J., Rauh W., Geometric least squares fitting of circle and ellipse, Int. J. Pattern Recognit.
Artif. Intell., vol. 13:(7), pp. 987-996, 1999.
2. Ballas S.K., Smith E.D., Red blood cell changes during the evolution of the sickle cell painful
crisis, Blood, vol. 79:(8), pp. 2154-2163, Apr. 1992.
3. Banerjee R., Nageshwari K., Puniyani R.R., The diagnostic relevance of red cell rigidity, Clin.
Hemorheol. Microcirc., vol. 19, pp. 21-24, 1998.
4. Bareford D., Stone P.C.W., Caldwell N.M., Meiselman H.J., Stuart J., Comparison of
instruments for measurement of erythrocyte deformability, Clin. Hemorheol., vol. 5, pp. 311-
322, 1985.
5. Baskurt O.K., Meiselman H.J., Determination of red blood cell shape recovery time constant in
a couette system by the analysis of light reflectance and ektacytometry, Biorheology, vol.
33:(6), pp. 489-503, 1996.
6. Bauersachs R.M., Wenby R.B., Meiselman H.J., Determination of specific red blood cell
aggregation indices via an automated system, Clin. Hemorheol., vol. 9, pp. 1-25, 1989.
7. Bessis M., Feo C., Jones E., Nossal M., Adaptation of the ektacytometer to automated
continuous pO2 changes: determination of erythrocyte deformability in sickling disorders,
Cytometry, vol. 3:(4), pp. 296-299, 1983.
8. Bessis M., Mohandas N., Deformability of normal, shape-altered and pathological red cells,
Blood cells, vol. 1, pp. 315-321, 1971.
9. Bessis M., Mohandas, N., Feo C., Automated ektacytometry: A new method of measuring red
cell deformability and red cell indices, Blood cells, vol. 6, pp. 315-327, 1980.
10. Brinkman R., Zijlstra W.G., Jansonius N.J., Quantitative evaluation of the rate of rouleaux
formation of erythrocytes by measuring light reflection (“SyllectometryProc. Roy. Dutch Acad.
Sci., Series C, vol. 66:(3), pp. 236-247, Jan. 1963.
11. Chasis J.A., Mohandas N., Erythocyte membrane deformability and stability: two distinct
membrane properties that are independently regulated by skeletal protein associations, J. Cell
Biol., vol. 103:(2), pp. 343-350, 1986.
12. Chien S., Sung L.A., Physicochemical basis and clinical implications of red cell aggregation,
Clin. Hemorheol., vol. 7, pp. 71-91, 1987.
13. Chien S., Usami S., Dellenback R.J., Gregersen M.I., Nanninga L.B., Guest M.M., Blood
viscosity: Influence of erytrocyte aggregation, Science, vol. 157, pp. 829-831, 1967.
14. Cicco G., Pirrelli A., Red blood cell (RBC) deformability, RBC aggregation and tissue
oxygenation in hypertension, Clin. Hemorheol. Microcirc., vol. 21, pp. 169-177, 1999.
15. Dobbe J.G.G., Engineering developments in hemorheology, PhD Thesis, University of
Amsterdam, Sept. 2002.
16. Dobbe J.G.G., Streekstra G.J., Strackee J., Rutten M.C.M., Stijnen J.M.A., Grimbergen C.A.,
Syllectometry: Effect of aggregometer geometry in the assessment of red blood-cell shape
recovery and aggregation, IEEE-Transactions on Biomedical Engineering, vol. 50:(1), pp. 97-
106, 2003.