EasyManua.ls Logo

IDEC MICRO3 User Manual

IDEC MICRO3
235 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #155 background imageLoading...
Page #155 background image
9: MOVE INSTRUCTIONS
9-4 USERS MANUAL
13 IMOV (Indirect Move)
Key Operation
Valid Operands (Standard Processing)
In the high-speed processing mode, operands for advanced instructions are limited. See page 6-1.
When T (timer) or C (counter) is designated as S1, S2, or D2, the operand data is the timer/counter current value. When T
(timer) or C (counter) is designated as D1, the operand data is the timer/counter preset value which can be 0 through 9999.
Make sure that the source data determined by S1 + S2 and the destination data determined by D1 + D2 are within the oper-
and range. If the derived source or destination operand is out of the operand range, a user program execution error will
result, turning on special internal relay M304 and error indicator ERR1.
When a bit operand such as input, output, internal relay, or shift register is used as the source or destination, 16 points are
used. When repeat is designated for a bit operand, the quantity of operand bits increases in 16-point increments.
Source operand S2 and destination operand D2 do not have to be designated. If S2 or D2 is not designated, the source or
destination operand is determined by S1 or D1 without offset.
Example: IMOV
Operand Function I Q M T C R D Constant Repeat
S1 (Source 1) Base address to move from 0-35 0-31 0-317 0-31 0-31 0-63 0-99 1-31
S2 (Source 2) Offset for S1 0-35 0-31 0-287 0-31 0-31 0-63 0-99
D1 (Destination 1) Base address to move to 0-31 0-287 0-31 0-31 0-63 0-99 1-31
D2 (Destination 2) Offset for D1 0-35 0-31 0-287 0-31 0-31 0-63 0-99
IMOV S1(R)
****
REP
**
S1 + S2 D1 + D2
When the input is on, the values contained in operands des-
ignated by S1 and S2 are added to determine the source of
data. The 16-bit word data so determined is moved to des-
tination, which is determined by the sum of values con-
tained in operands designated by D1 and D2.
S2
****
D1(R)
****
D2
****
ADV
1
BPS
1 S1
IMOV S2:
D1:
D2:
Enter operands S1, S2, D1, and D2.
When repeat is required, press the REP key for the operand
to repeat, and enter the number of repeat cycles.
To exit, press the key.
3
BPP
I0
IMOV REP
**
D20 + C10 → D10 + D25
Source operand S1 and destination operand D1 determine the type of operand. Source operand
S2 and destination operand D2 are the offset values to determine the source and destination
operands.
If the current value of counter C10 designated by source operand S2 is 4, the source data is
determined by adding the offset to data register D20 designated by source operand S1:
D(20 + 4) = D24
If data register D25 contains a value of 20, the destination is determined by adding the offset to
data register D10 designated by destination operand D1:
D(10 + 20) = D30
As a result, when input I0 is on, the data in data register D24 is moved to data register D30.
D23
D22
6450
D24
6450
D30
S1
D20
D2
D25
D1
D10
S2
C10
D21
D20
20
D25
4
C10

Table of Contents

Question and Answer IconNeed help?

Do you have a question about the IDEC MICRO3 and is the answer not in the manual?

IDEC MICRO3 Specifications

General IconGeneral
BrandIDEC
ModelMICRO3
CategoryController
LanguageEnglish

Summary

General Information

Introduction

Provides an overview of general information for understanding MICRO3 functions and specifications.

Features

Highlights the key high-performance functions of the MICRO3 space-saving programmable controller.

Parts Description

Identifies and explains the physical components and terminals of the MICRO3 base unit.

System Setup

Covers basic system configuration, cable connections, off-line programming, and programming tools.

Link Systems

Explains expansion, data, and computer link systems for distributed control and networking.

General Specifications

Lists electrical, environmental, and physical specifications for the MICRO3 unit.

Function Specifications

Details processing modes, I/O capabilities, scan times, memory, and special functions.

Communication and Noise Specs

Covers loader port, data link communication, and noise immunity/emission standards.

Crimping Terminal

Details specifications and usage for crimping terminals for wire connections.

Wiring Diagrams

Provides visual guides for connecting DC and AC power and input signals to the MICRO3.

Output Wiring Diagrams

Illustrates wiring for relay, transistor sink, and transistor protect source outputs.

Dimensions

Shows physical dimensions and mounting hole layouts for the base unit and program loader.

Installation and Disposal

Details installation requirements, methods (direct mounting, DIN rail), and unit disposal procedures.

CHAPTER 2: OPERATION BASICS

Introduction

Describes general information for starting and stopping MICRO3 operation and simple procedures.

Start/Stop Operations

Explains how to start, stop, and reset the MICRO3 unit and monitor its operational status.

Simple Operation and Programming

Guides through connecting the loader, creating, transferring, and monitoring simple user programs.

CHAPTER 3: PROGRAM LOADER

Introduction

Describes general information for understanding the functions and specifications of the program loader.

Parts Description

Identifies the components and features of the FC2A-HL1E program loader.

Operation Modes and Key Usage

Details the Editor, Transfer, Monitor, and FUN modes and how to use the program loader keys.

Programming Procedures

Outlines steps for powering the loader, deleting programs, changing settings, creating, checking, and transferring programs.

Using Editor Mode

Explains how to create, delete, select addresses, and insert instructions in the program editor.

Transfer Operations

Covers writing, reading, and comparing programs between loader, base unit, and memory card.

Memory Card Operations

Details identifying, formatting, installing, and restoring system programs on the memory card.

Using Monitor Mode

Explains how to monitor I/O, relays, timers, counters, and data registers.

Setting and Resetting

Details how to SET/RST inputs, outputs, and internal relays using the program loader.

FUN Settings

Describes various FUN settings for CPU configuration, program loader, and memory card.

CHAPTER 4: SPECIAL FUNCTIONS

Introduction

Introduces special functions like high-speed processing, catch input, pulse output, counters, and link functions.

High-speed Processing & Input Features

Covers high-speed processing mode, catch input function, and input filter function.

Output & Counter Functions

Explains Pulse Output, PWM, and High-speed Counter instructions for precise control.

Link Functions

Details Expansion Link, Data Link, and Computer Link systems for networking and distributed control.

Analog Functions

Covers External Analog Timer, Analog Input, and Analog Output functions for signal processing.

CHAPTER 5: CPU CONFIGURATION (FUN)

Introduction

Describes setting the FUN (function) table for user program configuration.

FUN Settings Overview

Provides an overview of FUN settings for program configuration, status monitoring, and loader operation.

Key Operation

Describes how to navigate and select FUN settings using the program loader keys.

Specific FUN Settings

Details individual FUN settings from FUN1 to FUN50 for comprehensive device configuration.

CHAPTER 6: ALLOCATION NUMBERS

Introduction

Describes allocation numbers available for programming basic and advanced instructions.

Allocation Numbers

Lists available I/O, internal relays, timers, counters, and data registers for standard and high-speed modes.

Special Internal Relays

Details the functions of special internal relays M290 through M317 for specific operations.

CHAPTER 7: BASIC INSTRUCTIONS

Introduction

Describes programming of basic instructions, available operands, and sample programs.

Basic Instruction List

Provides a comprehensive list of basic instructions, their symbols, functions, and address requirements.

Logic, Load, and Stack Instructions

Explains instructions like LOD, OUT, AND, OR, AND LOD, OR LOD, BPS, BRD, BPP for basic logic and stack operations.

Timers and Counters

Covers the usage and parameters of TIM, TMH, TMS timers, and CNT, CC=, CC>= counters.

Shift Registers

Explains SFR, SFRN, and Bidirectional Shift Register instructions for data shifting.

Special Output and Control Instructions

Covers SOTU, SOTD, MCS/MCR, JMP/JEND, SET/RST, and END instructions for program control.

CHAPTER 8: ADVANCED INSTRUCTIONS

Introduction

Describes advanced instruction menus, operands, formats, and data types.

Instruction Menus and Structure

Explains advanced instruction menus, list, structure, input conditions, and operand usage.

Programming and Revision

Details how to program, revise, and use repeat operations for advanced instructions via the loader.

CHAPTER 9: MOVE INSTRUCTIONS

Introduction

Introduces instructions for moving data: MOV, MOVN, IMOV, IMOVN.

Move Instructions

Explains MOV, MOVN, IMOV, and IMOVN for transferring data between registers and I/O.

Repeat Operation and Examples

Details using repeat operations with source and destination operands and provides practical examples.

CHAPTER 10: COMPARISON INSTRUCTIONS

Introduction

Describes comparing data using instructions like equal to, unequal to, less than, and greater than.

Comparison Instructions

Explains CMP=, CMP<>, CMP<, CMP>, CMP<=, and CMP>= instructions for value comparison.

Repeat Operation and Examples

Details using repeat operations with operands and demonstrates examples of CMP instructions.

CHAPTER 11: BINARY ARITHMETIC INSTRUCTIONS

Introduction

Covers binary arithmetic instructions for computation using addition, subtraction, multiplication, and division.

Arithmetic Instructions

Explains ADD, SUB, MUL, and DIV instructions for performing binary arithmetic operations.

Carry/Borrow Handling and Repeat Ops

Covers M303 for carry/borrow signals, repeat operations, and examples for arithmetic instructions.

CHAPTER 12: BOOLEAN COMPUTATION INSTRUCTIONS

Introduction

Introduces Boolean computations using AND, OR, and exclusive OR statements.

Boolean Computation Instructions

Explains ANDW, ORW, and XORW instructions for performing bitwise Boolean operations on words.

Repeat Operation and Example

Details using repeat operations with operands and demonstrates an example of XORW instruction.

CHAPTER 13: BIT SHIFT / ROTATE INSTRUCTIONS

Introduction

Explains bit shift and rotate instructions for shifting 16-bit data in data registers.

Shift and Rotate Instructions

Explains SFTL (Shift Left), SFTR (Shift Right), ROTL (Rotate Left), and ROTR (Rotate Right) instructions.

Bidirectional Shift Register

Describes creating a bidirectional shift register using SFR and SFRN instructions.

Examples

Demonstrates examples of SFTL, SFTR, ROTL, and ROTR instructions with practical usage.

CHAPTER 14: CLOCK / CALENDAR INSTRUCTIONS

Introduction

Introduces instructions for programming the real-time calendar and clock.

Calendar and Clock Instructions

Covers CALR, CALW, CLKR, CLKW, and ADJ instructions for reading and setting time and date.

Examples

Provides examples for CLKW, ADJ, and Time Scheduled Control using clock/calendar data.

CHAPTER 15: INTERFACE INSTRUCTIONS

Introduction

Describes instructions for interfacing with display units, digital switches, and analog potentiometers.

Interface Instructions

Details DISP (display), DGRD (digital read), ANR0/ANR1 (analog read) instructions.

Examples

Illustrates examples of DISP, DGRD, and ANR0 instructions for practical interface usage.

CHAPTER 16: PULSE, A/D CONVERSION INSTRUCTIONS

Introduction

Introduces instructions for pulse output, PWM, and analog-to-digital conversion.

Pulse Output Instructions

Explains PULS for pulse output and PWM for pulse width modulation for motor control.

A/D Conversion Instruction

Describes the A/D instruction for converting analog signals to digital values.

Examples

Provides examples for PULS, PWM, and A/D conversion instructions.

CHAPTER 17: HIGH-SPEED COUNTER INSTRUCTIONS

Introduction

Describes high-speed counter functions for position control and motor control.

Specifications and Instructions

Lists HSC specifications and details HSC0, HSC1, HSC2, and HSC3 instructions.

Examples

Demonstrates examples of HSC0, HSC1, HSC2, and HSC3 instructions with practical scenarios.

CHAPTER 18: TROUBLESHOOTING

Introduction

Describes procedures to determine causes of trouble and actions for taking when any trouble occurs.

Error Indicators and Messages

Explains ERR1/ERR2 indicators, reading error codes, error messages, and general error codes.

Error Causes and Actions

Details specific error codes, their causes, and recommended actions for resolution.

Troubleshooting Diagrams

Provides visual flowcharts to diagnose and resolve common operational issues.

APPENDIX

Execution Times

Lists the maximum execution times for various instructions in standard and high-speed processing modes.

END Processing Time Breakdown

Details the breakdown of time components contributing to the END instruction's processing time.

Type List

Lists MICRO3 CPU base units, expansion I/O, and program loader types with their specifications.

Cables and Accessories

Lists available cables, accessories, and adapters for the MICRO3 system and program loader.

Related product manuals