EasyManua.ls Logo

Texas Instruments Titanium TI-89 - Deltype; Delvar Catalog; Desolve Math;Calculus Menu

Texas Instruments Titanium TI-89
1008 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
808 Appendix A: Functions and Instructions
DelType
DelType
var_type
Deletes all unlocked variables of the type
specified by
var_type
.
Note: Possible values for
var_type
are:
ASM, DATA, EXPR, FUNC, GDB, LIST, MAT, PIC,
PRGM, STR, TEXT, AppVar_type_name, All.
Deltype “LIST” ¸ Done
DelVar CATALOG
DelVar
var1
[,
var2
] [,
var3
] ...
Deletes the specified variables from memory.
2! a ¸ 2
(a+2)^2
¸ 16
DelVar a
¸ Done
(a+2)^2
¸ (a + 2)ñ
deSolve() MATH/Calculus menu
deSolve(
1stOr2ndOrderOde
,
independentVar
,
dependentVar
)
a general solution
Returns an equation that explicitly or implicitly
specifies a general solution to the 1st- or 2nd-
order ordinary differential equation (ODE). In the
ODE:
Use a prime symbol ( '
, press 2 È) to
denote the 1st derivative of the dependent
variable with respect to the independent
variable.
Use two prime symbols to denote the
corresponding second derivative.
The ' symbol is used for derivatives within
deSolve() only. In other cases, use
d
().
The general solution of a 1st-order equation
contains an arbitrary constant of the form
@k
,
where
k
is an integer suffix from 1 through 255.
The suffix resets to 1 when you use
ClrHome or
ƒ
8: Clear Home. The solution of a 2nd-order
equation contains two such constants.
Note: To type a prime symbol (
' ), press
2
È.
deSolve(y''+2y'+y=x^2,x,y)¸
y=(
@
1øx+
@
2)ø
e
ë x
+xñì4øx+6
right(ans(1))!temp ¸
(
@
1øx+
@
2)ø
e
ë x
+xñì4øx+6
d
(temp,x,2)+2ù
d
(temp,x)+tempìx^2
¸ 0
DelVar temp ¸ Done
Apply solve() to an implicit solution if you want
to try to convert it to one or more equivalent
explicit solutions.
deSolve(y'=(cos(y))^2ùx,x,y) ¸
tan(y)=
xñ
2
+@3
When comparing your results with textbook or
manual solutions, be aware that different
methods introduce arbitrary constants at different
points in the calculation, which may produce
different general solutions.
solve(ans(1),y) ¸
y=tanê
(
2
2@3
2
x
+ i
)
+@n1øp
ans(1)|@3=cì1 and @n1=0 ¸
y=tanê
(
x
xx
xñ +2
+2+2
+2ø(
((
(c
cc
cì 1
11
1)
))
)
2
22
2
)
deSolve(
1stOrderOde
and
initialCondition
,
independentVar
,
dependentVar
)
a particular solution
Returns a particular solution that satisfies
1stOrderOde
and
initialCondition
. This is usually
easier than determining a general solution,
substituting initial values, solving for the arbitrary
constant, and then substitutin
g
that value into
sin(y)=(yù
e
^(x)+cos(y))y'!ode ¸
sin(y)=(
e
x
øy+cos(y))øy'
deSolve(ode and y(0)=0,x,y)!soln
¸
ë(2øsin(y)+yñ)
2
=
==
=ë(
((
(
e
x
xx
x
ì1)
1)1)
1)ø
e
ëx
xx
x
øsin(y)
sin(y)sin(y)
sin(y)

Table of Contents

Related product manuals