EasyManua.ls Logo

ABB RED650 - Page 603

ABB RED650
926 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
D
A
1 p( ) Z
A
Z
AL
Z
B
+ +( ) Z
B
+×
2 Z
A
Z
L
2 Z
B
×+ +×
-----------------------------------------------------------------------------
=
EQUATION101 V1 EN-US (Equation 84)
The K
N
compensation factor for the double line becomes:
K
N
Z
0L
Z
1L
3 Z
1L
×
------------------------
Z
0M
3 Z
1L
×
-----------------
I
0P
I
0A
-------
×+=
EQUATION102 V1 EN-US (Equation 85)
From these equations it can be seen, that, if Z
0m
= 0, then the general fault location
equation for a single line is obtained. Only the distribution factor differs in these
two cases.
Because the D
A
distribution factor according to equation
81 or 83 is a function of
p, the general equation 83 can be written in the form:
p
2
p K
1
K
2
K
3
R
F
×+× 0=
EQUATION103 V1 EN-US (Equation 86)
Where:
K
1
U
A
I
A
Z
L
×
----------------
Z
B
Z
L
Z
A DD
+
---------------------------
1+ +=
EQUATION104 V1 EN-US (Equation 87)
K
2
U
A
I
A
Z
L
×
----------------
Z
B
Z
L
Z
A DD
+
---------------------------
1+
è ø
æ ö
×=
EQUATION105 V1 EN-US (Equation 88)
K
3
I
FA
I
A
Z
L
×
----------------
Z
A
Z
B
+
Z
1
Z
A DD
+
---------------------------
1+
è ø
æ ö
×=
EQUATION106 V1 EN-US (Equation 89)
and:
Z
ADD
= Z
A
+ Z
B
for parallel lines.
I
A
, I
FA
and U
A
are given in the above table.
K
N
is calculated automatically according to equation
85.
Z
A
, Z
B
, Z
L
, Z
0L
and Z
0M
are setting parameters.
For a single line, Z
0M
= 0 and Z
ADD
= 0. Thus, equation 86 applies to both single
and parallel lines.
Equation
86 can be divided into real and imaginary parts:
1MRK 505 394-UEN A Section 15
Monitoring
Line differential protection RED650 2.2 IEC 597
Technical manual

Table of Contents

Other manuals for ABB RED650

Related product manuals