12-6
Software Configuration Guide—Release IOS XE 3.6.0E and IOS 15.2(2)E
OL_28731-01
Chapter 12 Configuring Cisco NSF with SSO Supervisor Engine Redundancy
About NSF with SSO Supervisor Engine Redundancy
If the BGP session is lost during the supervisor engine switchover, the NSF-aware BGP peer marks all
the routes associated with the NSF-capable router as stale; however, it continues to use these routes to
make forwarding decisions for a set period of time. This functionality prevents packets from being lost
while the newly active supervisor engine is waiting for convergence of the routing information with the
BGP peers.
After a supervisor engine switchover occurs, the NSF-capable router reestablishes the session with the
BGP peer. In establishing the new session, it sends a new graceful restart message that identifies the
NSF-capable router as having restarted.
At this point, the routing information is exchanged between the two BGP peers. After this exchange is
complete, the NSF-capable device uses the routing information to update the RIB and the FIB with the
new forwarding information. The NSF-aware device uses the network information to remove stale routes
from its BGP table; the BGP protocol then is fully converged.
If a BGP peer does not support the graceful restart capability, it ignores the graceful restart capability in
an OPEN message but establishes a BGP session with the NSF-capable device. This function allows
interoperability with non-NSF-aware BGP peers (and without NSF functionality), but the BGP session
with non-NSF-aware BGP peers is not capable of a graceful restart.
Note BGP support in NSF requires that neighbor networking devices be NSF-aware; that is, the devices must
have the graceful restart capability and advertise that capability in their OPEN message during session
establishment. If an NSF-capable router discovers that a particular BGP neighbor does not have graceful
restart capability, it does not establish an NSF-capable session with that neighbor. All other neighbors
that have graceful restart capability continue to have NSF-capable sessions with this NSF-capable
networking device.
OSPF Operation
Note OSPF Version 2 fast hellos generate false alarm. We recommend that you use Bidirectional Forwarding
Detection (BFD) instead.
When an OSPF NSF-capable router performs a supervisor engine switchover, it must perform the
following tasks in order to resynchronize its link state database with its OSPF neighbors:
• Relearn the available OSPF neighbors on the network without causing a reset of the neighbor
relationship
• Reacquire the contents of the link state database for the network
As quickly as possible after a supervisor engine switchover, the NSF-capable router sends an OSPF NSF
signal to neighboring NSF-aware devices. Neighbor networking devices recognize this signal as an
indicator that the neighbor relationship with this router should not be reset. As the NSF-capable router
receives signals from other routers on the network, it can begin to rebuild its neighbor list.
After neighbor relationships are reestablished, the NSF-capable router begins to resynchronize its
database with all of its NSF-aware neighbors. At this point, the routing information is exchanged
between the OSPF neighbors. Once this exchange is complete, the NSF-capable device uses the routing
information to remove stale routes, update the RIB, and update the FIB with the new forwarding
information. The OSPF protocols are then fully converged.