EasyManua.ls Logo

Fuji Electric FRENIC-Ace series - Page 591

Fuji Electric FRENIC-Ace series
788 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
10.3 Equations for Selections
10-9
SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES
Chap 10
(2) For a general rotating body
Table 10.3-1 lists the calculation equations of moment of inertia of various rotating bodies including the above
cylindrical rotating body.
Table 10.3-1 Moment of Inertia of Various Rotating Bodies
Shape
Mass: W (kg)
Shape
Mass: W (kg)
Moment of inertia:
J (kg·m
2
)
Moment of inertia:
J (kg·m
2
)
Hollow cylinder
ρ
π
=
L)DD(
4
W
2
2
2
1
ρ= LBAW
)DD(W
8
1
J
2
2
2
1
+=
)A+L(W
12
1
=J
22
a
)A
4
1
+L(W
12
1
=J
22
b
)L
3
1
LLL(WJ
2
0
2
0c
++
Sphere
ρ
π
=
3
D
6
W
2
DW
10
1
=J
Cone
ρ
π
=
LD
12
W
2
ρ
π
=
LD
4
W
2
2
DW
40
3
J
=
)D
4
3
+L(W
12
1
=J
22
a
)D
16
3
+L(W
3
1
=J
22
b
)L
3
1
LLL(WJ
2
0
2
0c
++
Rectangular prism
ρ=
LBAW
)BA(W
12
1
J
22
+=
Square cone (Pyramid,
rectangular base)
ρLBA
3
1
=W
ρ=
LBA
3
1
W
)B+A(W
20
1
=J
22
)A
4
1
+L(W
10
1
=J
22
b
)L
5
3
LL
2
3
L(WJ
2
0
2
0c
++
Triangular prism
ρ= LA
4
3
W
2
2
AW
3
1
=J
ρ
π
= LD
12
W
2
Tetrahedron with an
equilateral triangular
base
ρ=
LA
12
3
W
2
)D
8
3
+L(W
10
1
=J
22
b
)L
5
3
LL
2
3
L(WJ
2
0
2
0c
++
2
AW
5
1
=J
Main metal density (at 20°C) ρ(kg/m
3
) Iron: 7860, Copper: 8940, Aluminum: 2700

Table of Contents

Related product manuals