EasyManua.ls Logo

Hioki IM3536 - Page 244

Hioki IM3536
276 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Appx.2
Measurement Parameters and Calculation Formula
From the voltage
V
which is applied between the terminals of the sample under test, the current
I
which ows through the test sample at this time, the phase angle
θ
between this voltage V and this
current I, and the angular velocity
ω
which corresponds to the measurement frequency.
The phase angle
θ
is shown based on the impedance
Z
. When measuring based on the admittance
Y
, the
sign of the phase angle
θ
must be reversed.
Item Series equivalent circuit mode Parallel equivalent circuit mode
Z
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
Y
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
R
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
*
X
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
G
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
*
B
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
*
L
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
C
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
D
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
Q
(
)
22
XR
I
V
Z +==
(
)
22
BG
Z
1
Y +==
θ
cosZESRR
S
==
==
G
1
cosY
1
R
P
φ
θ
sinZX =
φ
cosYG =
φ
sinYB =
ω
X
L
S
=
B
1
L
P
ω
=
X
1
C
S
ω
=
ω
B
C
P
=
θ
θ
sin
cos
D =
==
D
1
cos
sin
Q
θ
θ
*
ϕ
: phase angle of admittance
Y
(
ϕ
=-
θ
)
Ls
,
Cs
,
Rs
: The measured values of
L
,
C
, and
R
in series equivalent circuit mode.
Lp
,
Cp
,
Rp
: The measured values of
L
,
C
, and
R
in parallel equivalent circuit mode.

Table of Contents

Related product manuals