EasyManua.ls Logo

Casio FX-CG20 AU

Casio FX-CG20 AU
608 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
6-25
u Calculation of the Correlation Coefficient (r), Coefficient of Determination
(r
2
) and Mean Square Error (MSe)
After the regression formula parameters on the regression calculation result screen, the
following parameters also appear on the display. The parameters that appear depend on the
regression formula.
Correlation coefficient (r)
Displayed following: linear regression, logarithmic regression, exponential regression, or power
regression calculation.
Coefficient of determination (r
2
)
Displayed following: linear regression, quadratic regression, cubic regression, quartic
regression, logarithmic regression, exponential regression, power regression calculation.
Mean square error (MSe)
Displayed following any regression calculation except Med-Med.
Depending on the regression calculation type, mean square error (MSe) is obtained using the
following formulas.
Linear Regression (
ax + b ) .............
(
a + bx ) .............
• Quadratic Regression .....................
• Cubic Regression ...........................
• Quartic Regression .........................
• Logarithmic Regression ..................
Exponential Regression (
a · e
bx
) .......
(
a · b
x
) ........
M
Se =
Σ
1
n – 2
i=1
n
(y
i
– (ax
i
+ b))
2
M
Se =
Σ
1
n – 2
i=1
n
(y
i
– (ax
i
+ b))
2
M
Se =
Σ
1
n – 2
i=1
n
(yi – (a + bxi))
2
M
Se =
Σ
1
n – 2
i=1
n
(yi – (a + bxi))
2
M
Se =
Σ
1
n – 3
i=1
n
(y
i
– (ax
i
+ bx
i
+ c))
2
2
M
Se =
Σ
1
n – 3
i=1
n
(y
i
– (ax
i
+ bx
i
+ c))
2
2
M
Se =
Σ
1
n – 4
i=1
n
(y
i
– (ax
i
3
+ bx
i
+ cx
i
+ d ))
2
2
M
Se =
Σ
1
n – 4
i=1
n
(y
i
– (ax
i
3
+ bx
i
+ cx
i
+ d ))
2
2
M
Se =
Σ
1
n – 5
i=1
n
(yi – (axi
4
+ bxi
3
+ cxi
+ dxi
+ e))
2
2
M
Se =
Σ
1
n – 5
i=1
n
(yi – (axi
4
+ bxi
3
+ cxi
+ dxi
+ e))
2
2
M
Se =
Σ
1
n – 2
i=1
n
(y
i
– (a + b ln x
i
))
2
M
Se =
Σ
1
n – 2
i=1
n
(y
i
– (a + b ln x
i
))
2
M
Se =
Σ
1
n – 2
i=1
n
(ln y
i
– (ln a + bx
i
))
2
M
Se =
Σ
1
n – 2
i=1
n
(ln y
i
– (ln a + bx
i
))
2
M
Se =
Σ
1
n – 2
i=1
n
(ln yi – (ln a + (ln b) · xi ))
2
M
Se =
Σ
1
n – 2
i=1
n
(ln yi – (ln a + (ln b) · xi ))
2

Table of Contents

Related product manuals