EasyManua.ls Logo

YOKOGAWA DL7440

YOKOGAWA DL7440
501 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
App-20 IM 701450-01E
Differentiation and Integration (DIF, DDIF, INTG, and IINTG)
Differentiation (DIF, DDIF)
The computation of the first order and second order differentiation uses the 5
th
order
Lagrange interpolation formula to derive a point of data from the 5 points around the
point. The figure below shows data f
0
to f
n
with respect to sampling time x
0
to x
n
. The
derivative and integrated value corresponding to these data points are computed as
follows:
x
0
x
1
x
2
x
3
x
4
x
k
x
n-3
x
n-2
x
n-1
x
n
f
f
0
f
1
f
2
f
3
f
4
f
k
f
n-4
f
n-3
f
n-2
f
n-1
f
n
n-4
x
Equation for First Order Derivative (DIF)
Point x
0
f
0
'= [–25f
0
+ 48f
1
– 36f
2
+ 16f
3
– 3f
4
]
Point x
1
f
1
'= [–3f
0
– 10f
1
+ 18f
2
– 6f
3
+ f
4
]
Point x
2
f
2
'= [f
0
– 8f
1
+ 8f
3
– f
4
]
Point x
k
f
k
'= [f
k-2
– 8f
k-1
+ 8f
k+1
– f
k+2
]
Point x
n-2
f
n-2
'= [f
n-4
– 8f
n-3
+ 8f
n-1
– f
n
]
Point x
n-1
f
n-1
'= [–f
n-4
+ 6f
n-3
– 18f
n-2
+ 10f
n-1
+ 3f
n
]
Point x
n
f
n
'= [3f
n-4
– 16f
n-3
+ 36f
n-2
– 48f
n-1
+ 25f
n
]
h = x is the sampling interval (sec) (example h = 200 × 10
–6
at 5 kHz)
1
12h
1
12h
1
12h
1
12h
1
12h
1
12h
1
12h
Equation for Second Order Derivative (DDIF)
Point x0 f0"= [35f0 – 104f1 + 114f2 – 56f3 + 11f4]
Point x
1 f1"= [11f0 – 20f1 + 6f2 + 4f3 – f4]
Point x
2 f2"= [–f0 + 16f1 – 30f2 + 16f3 – f4]
Point x
k fk"= [–fk-2 + 16fk-1 – 30fk + 16fk+2 – fk+2]
Point x
n-2 fn-2"= [–fn-4 + 16fn-3 – 30fn-2 + 16fn-1 – fn]
Point x
n-1 fn-1"= [–fn-4 + 4fn-3 + 6fn-2 – 20fn-1 + 11fn]
Point x
n fn"= [11fn-4 – 56fn-3 + 114fn-2 – 104fn-1 + 35fn]
1
12h
2
1
12h
2
1
12h
2
1
12h
2
1
12h
2
1
12h
2
1
12h
2
Appendix 4 User-Defined Computation

Table of Contents

Other manuals for YOKOGAWA DL7440

Related product manuals