EasyManua.ls Logo

Altera Stratix - 2-D DCT Algorithm

Altera Stratix
572 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Altera Corporation 7–53
September 2004 Stratix Device Handbook, Volume 2
Implementing High Performance DSP Functions in Stratix & Stratix GX Devices
For 1-D with input data x(n) of size N, the DCT coefficients Y(k) are:
for 0
k N–1
where:
for k = 0
for 1
k N –1
For 2-D with input data x(m,n) of size N × N, the DCT coefficients for the
output image, Y(p,q) are:
where:
for p = 0
for q = 0
for 1
p N –1
for 1
q N–1
2-D DCT Algorithm
The 2-D DCT can be thought of as an extended 1-D DCT applied twice;
once in the x direction and again in the y direction. Because the 2-D DCT
is a separable transform, it is possible to calculate it using efficient 1-D
algorithms. Figure 7–32 illustrates the concept of a separable transform.
Yk()
α k()
2
-----------
xn()
2n 1+()πk
2N
---------------------------
⎝⎠
⎛⎞
cos
n0=
N1
=
α k()
1
N
----=
α k()
2
N
----=
Yp q,()
α p()αq()
2
-----------------------
xm n,()
2m 1+()πp
2N
-----------------------------
⎝⎠
⎛⎞
cos
2n 1+()πq
2N
---------------------------
⎝⎠
⎛⎞
cos
n0=
N1
m0=
N1
=
α p()
1
N
----=
α q()
1
N
----=
α p()
2
N
----=
α q()
2
N
----=

Table of Contents

Related product manuals