EasyManua.ls Logo

Altera Stratix - Page 44

Altera Stratix
572 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
1–26 Altera Corporation
Stratix Device Handbook, Volume 2 July 2005
Enhanced PLLs
Spread-spectrum technology modulates the target frequency over a small
range. For example, if a 100-MHz signal has a 0.5% down-spread
modulation, then the frequency is swept from 99.5 to 100 MHz.
Figure 1–14 gives a graphical representation of the energy present in a
spread-spectrum signal as opposed to a non-spread-spectrum signal. It is
apparent that instead of concentrating the energy at the target frequency,
the energy is re-distributed across a wider band of frequencies, which
reduces peak energy.
Not only is there a reduction in the fundamental peak EMI components,
but there is also a reduction in EMI of the higher order harmonics. Since
some regulations focus on peak EMI emissions, rather than average EMI
emissions, spread-spectrum technology is a valuable method of EMI
reduction.
Figure 1–14. Spread-Spectrum Signal Energy versus Non-Spread-Spectrum Signal Energy
Spread-spectrum technology would benefit a design with high EMI
emissions and/or strict EMI requirements. Device-generated EMI is
dependent on frequency, output voltage swing amplitude, and slew rate.
For example, a design using LVDS already has low EMI emissions
δ = 0.5%
Δ = ~5 dB
Amplitude
(dB)
Frequency
(MHz)
Spread-Spectrum Signal
Non-Spread-Spectrum Signal

Table of Contents

Related product manuals