EasyManua.ls Logo

Campbell CR1000 - Derived Trigonometric Functions; Arithmetic Functions

Campbell CR1000
678 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Appendix A. CRBasic Programming Instructions
TANH
Returns the hyperbolic tangent of an expression or value.
Syntax
x = TANH(Source)
A.7.6.2 Derived Trigonometric Functions
Table Derived Trigonometric Functions (p. 568) lists trigonometric functions that
can be derived from intrinsic trigonometric functions.
Table 138. Derived Trigonometric Functions
Function CRBasic Equivalent
Secant Sec = 1 / Cos(X)
Cosecant Cosec = 1 / Sin(X)
Cotangent Cotan = 1 / Tan(X)
Inverse Secant Arcsec = Atn(X / Sqr(X * X - 1)) + Sgn(Sgn(X) - 1) * 1.5708
Inverse Cosecant Arccosec = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * 1.5708
Inverse Cotangent Arccotan = Atn(X) + 1.5708
Hyperbolic Secant HSec = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine HArcsin = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent HArctan = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HArcsec = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent HArccotan = Log((X + 1) / (X - 1)) / 2
A.7.7 Arithmetic Functions
ABS
Returns the absolute value of a number. Returns a value of data type Long when
the expression is type Long.
Syntax
x = ABS(source)
Ceiling
Rounds a value to a higher integer.
Syntax
variable = Ceiling(Number)
568

Table of Contents

Related product manuals