EasyManua.ls Logo

ATD2 10511 - Page 326

Default Icon
420 pages
Print Icon
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
FuelsManager Defense
306 Administrator Manual
calculate molecular weight from liquid density at 15°C as:
calculate critical temperature from liquid density at 15°C as:
calculate critical pressure from liquid density at 15°C as:
calculate reduced temperature from vapor temperature and critical temperature
as:
calculate reduced pressure from vapor space pressure and critical pressure as:
calculate W as:
calculate z by locating the smallest root of:
This may be solved by Newton Raphson as follows:
X = (DENL15 = 500) / 33.3333
MW = 43 + 4.4 x X + 1.35 x X
2
- 0.15 x X
3
TC = 364 + 13.33 x X + 8.5 x X
2
- 1.833 x X
3
PC = 43 = 2.283 x X + 0.05 x X
2
- 0.0667 x X
3
TR = (TV + 273.2) / TC
Where TR = Temperature of vapor
PR = (P + 1.013)/PC
Where P = pressure in vapor space
W = 0.214 - 0.034333 x X + 0.005 x X
2
- 0.0001667 x X
3
Z - Z + Z x (A-B-B
2
) - A x B
where:
B =0.08564 x PR/TR
L = 1 + (0.48 + 1.574 x W - 0.176 x W
2
) x (1-SQR(TR))
Z=1.5
20
F= Z3-Z2 + Z x (A-B-B
2
)-A x B
IF ABS(F) < 0.0001 THEN 70
F1= 3 x Z
2
- 2 x Z + A-B-B
2
Z= Z-F/F1
GOTO 20
A 0.42747 L
2
×
PR
TR
-------
× TR=

Table of Contents