FuelsManager Defense
306 Administrator Manual
calculate molecular weight from liquid density at 15°C as:
calculate critical temperature from liquid density at 15°C as:
calculate critical pressure from liquid density at 15°C as:
calculate reduced temperature from vapor temperature and critical temperature
as:
calculate reduced pressure from vapor space pressure and critical pressure as:
calculate W as:
calculate z by locating the smallest root of:
This may be solved by Newton Raphson as follows:
X = (DENL15 = 500) / 33.3333
MW = 43 + 4.4 x X + 1.35 x X
2
- 0.15 x X
3
TC = 364 + 13.33 x X + 8.5 x X
2
- 1.833 x X
3
PC = 43 = 2.283 x X + 0.05 x X
2
- 0.0667 x X
3
TR = (TV + 273.2) / TC
Where TR = Temperature of vapor
PR = (P + 1.013)/PC
Where P = pressure in vapor space
W = 0.214 - 0.034333 x X + 0.005 x X
2
- 0.0001667 x X
3
Z - Z + Z x (A-B-B
2
) - A x B
where:
B =0.08564 x PR/TR
L = 1 + (0.48 + 1.574 x W - 0.176 x W
2
) x (1-SQR(TR))
Z=1.5
20
F= Z3-Z2 + Z x (A-B-B
2
)-A x B
IF ABS(F) < 0.0001 THEN 70
F1= 3 x Z
2
- 2 x Z + A-B-B
2
Z= Z-F/F1
GOTO 20
A 0.42747 L
2
×
PR
TR
-------
× TR⁄=