EasyManua.ls Logo

ST STM32L4 5 Series - Page 722

ST STM32L4 5 Series
1830 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Digital filter for sigma delta modulators (DFSDM) RM0351
722/1830 DocID024597 Rev 5
Analog watchdog filter data for given channel y is available for reading by firmware on field
WDATA[15:0] in DFSDM_CHyWDATR register. That analog watchdog filter data is
converted continuously (if CHEN=1 in DFSDM_CHyCFGR1 register) with the data rate
given by the analog watchdog filter setting and the channel input clock frequency.
The analog watchdog filter conversion works like a regular Fast Continuous Conversion
without the intergator. The number of serial samples needed for one result from analog
watchdog filter output (at channel input clock frequency f
CKIN
):
first conversion:
for Sinc
x
filters (x=1..5): number of samples = [F
OSR
* F
ORD
+ F
ORD
+ 1]
for FastSinc filter: number of samples = [F
OSR
* 4 + 2 + 1]
next conversions:
for Sinc
x
and FastSinc filters: number of samples = [FOSR * IOSR]
where:
F
OSR
....... filter oversampling ratio: F
OSR
= AWFOSR[4:0]+1 (see DFSDM_CHyAWSCDR
register)
F
ORD
....... the filter order: F
ORD
= AWFORD[1:0] (see DFSDM_CHyAWSCDR register)
In case of output data register monitoring (AWFSEL=0), the comparison is done after a right
bit shift and an offset correction of final data (see OFFSET[23:0] and DTRBS[4:0] fields in
DFSDM_CHyCFGR2 register). A comparison is performed after each injected or regular
end of conversion for the channels selected by AWDCH[7:0] field (in DFSDM_FLTxCR2
register).
The status of an analog watchdog event is signalized in DFSDM_FLTxAWSR register where
a given event is latched. AWHTF[y]=1 flag signalizes crossing AWHT[23:0] value on
channel y. AWLTF[y]=1 flag signalizes crossing AWLT[23:0] value on channel y. Latched
events in DFSDM_FLTxAWSR register are cleared by writing ‘1’ into the corresponding
clearing bit CLRAWHTF[y] or CLRAWLTF[y] in DFSDM_FLTxAWCFR register.
The global status of an analog watchdog is signalized by the AWDF flag bit in
DFSDM_FLTxISR register (it is used for the fast detection of an interrupt source). AWDF=1
signalizes that at least one watchdog occurred (AWHTF[y]=1 or AWLTF[y]=1 for at least one
channel). AWDF bit is cleared when all AWHTF[7:0] and AWLTF[7:0] are cleared.
An analog watchdog event can be assigned to break output signal. There are four break
outputs to be assigned to a high or low threshold crossing event (
dfsdm_break[3:0]). The
break signal assignment to a given analog watchdog event is done by BKAWH[3:0] and
BKAWL[3:0] fields in DFSDM_FLTxAWHTR and DFSDM_FLTxAWLTR register.
24.4.11 Short-circuit detector
The purpose of a short-circuit detector is to signalize with a very fast response time if an
analog signal reached saturated values (out of full scale ranges) and remained on this value
given time. This behavior can detect short-circuit or open circuit errors (e.g. overcurrent or
overvoltage). An interrupt/event/break generation can be invoked.
Input data into a short-circuit detector is taken from channel transceiver outputs.
There is an upcounting counter on each input channel which is counting consecutive 0’s or
1’s on serial data receiver outputs. A counter is restarted if there is a change in the data
stream received - 1 to 0 or 0 to 1 change of data signal. If this counter reaches a short-circuit
threshold register value (SCDT[7:0] bits in DFSDM_CHyAWSCDR register), then a short-

Table of Contents

Related product manuals