EasyManua.ls Logo

R&S ZNB - Inv Smith

R&S ZNB
1496 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Concepts and Features
R&S
®
ZNB/ZNBT
111User Manual 1173.9163.02 ─ 55
The circles for the points of equal resistance are centered on the real axis and
intersect at Z = infinity. The arcs for the points of equal reactance also belong to
circles intersecting at Z = infinity (open circuit point (1, 0)), centered on a straight
vertical line.
Examples for special points in the Smith chart:
The magnitude of the reflection coefficient of an open circuit (Z = infinity, I = 0) is
one, its phase is zero.
The magnitude of the reflection coefficient of a short circuit (Z = 0, U = 0) is one, its
phase is –180 deg.
Inv Smith
For "Inv Smith" formatted traces, the response values are interpreted as complex
reflection coefficients S
ii
and represented in terms of their corresponding complex
admittance Y(S
ii
) = G(S
ii
) + j B(S
ii
).
In a diagram, the grid lines overlaid to a "Smith" trace correspond to points of equal
conductance G and susceptance B:
Points with the same conductance are located on circles.
Points with the same susceptance produce arcs.
The following example shows an inverted Smith chart with a marker used to display the
stimulus value, the complex admittance Y = G + j B and the equivalent inductance L.
Screen Elements

Table of Contents

Related product manuals