EasyManuals Logo

ST STM32F101xx User Manual

ST STM32F101xx
1096 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #375 background imageLoading...
Page #375 background image
RM0008 General-purpose timers (TIM2 to TIM5)
Doc ID 13902 Rev 12 375/1096
Figure 135 gives an example of counter behavior when IC1FP1 polarity is inverted (same
configuration as above except CC1P=1).
Figure 135. Example of encoder interface mode with IC1FP1 polarity inverted.
The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, deceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a Real-Time clock.
15.3.13 Timer input XOR function
The TI1S bit in the TIM1_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.
The XOR output can be used with all the timer input functions such as trigger or input
capture.
An example of this feature used to interface Hall sensors is given in Section 14.3.18 on page
315.
15.3.14 Timers and external trigger synchronization
The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.
Slave mode: Reset mode
The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.
In the following example, the upcounter is cleared in response to a rising edge on TI1 input:
Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
TI1
forward forwardbackwardjitter jitter
up
down
TI2
Counter
down

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the ST STM32F101xx and is the answer not in the manual?

ST STM32F101xx Specifications

General IconGeneral
BrandST
ModelSTM32F101xx
CategoryMicrocontrollers
LanguageEnglish

Related product manuals