EasyManua.ls Logo

Agilent Technologies E5071C

Agilent Technologies E5071C
2685 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Loading...
Measurement
333
H21(complex a, complex b,
complex c, complex d)
H
21
conversion = -2*b/((1-a)*(1+d) + b*c)
H21(scalar i, scalar j) returns H21(Sii, Sji, Sij, Sjj)
H22(complex a, complex b,
complex c, complex d)
H
22
conversion = (1/Z0)*((1-a)*(1-d) -
b*c)/((1-a)*(1+d) + b*c)
H22(scalar i, scalar j) returns H22(Sii, Sji, Sij, Sjj)
kfac(complex a, complex b,
complex c, complex d)
k-factor = (1 - abs(a)^2 - abs(d)^2 + (abs(a*d
- b*c)^2)/(2*abs(b*c))
kfac(scalar i, scalar j) returns kfac(Sii, Sji, Sij, Sjj)
MAPG(complex a, complex b,
complex c, complex d)
maximum available power gain =
abs(b/c)*(kfac(a,b,c,d) - sqrt(kfac(a,b,c,d)^2 -
1))
MAPG(scalar i, scalar j) returns MAPG(Sii, Sji, Sij, Sjj)
MSG(complex a, complex b,
complex c, complex d)
maximum stable power gain = abs(b)/abs(c)
MSG(scalar i, scalar j) returns MSG(Sii, Sji, Sij, Sjj)
mu1(complex a, complex b,
complex c, complex d)
µ-factor = (1 - abs(a)^2) / (abs(d - conj(a) *
(a*d-b*c)) + abs(b*c))
mu1(scalar i, scalar j) returns mu1(Sii, Sji, Sij, Sjj)
mu2(complex a, complex b,
complex c, complex d)
µ-factor = (1 - abs(d)^2) / (abs(a - conj(d) *
(a*d-b*c)) + abs(b*c))
mu2(scalar i, scalar j) returns mu2(Sii, Sji, Sij, Sjj)
T11(complex a, complex b,
complex c, complex d)
T
11
conversion = -(a*d - b*c)/b
T11(scalar i, scalar j) returns T11(Sii, Sji, Sij, Sjj)
T12(complex a, complex b,
complex c, complex d)
T
12
conversion = a/b
T12(scalar i, scalar j) returns T12(Sii, Sji, Sij, Sjj)

Table of Contents

Other manuals for Agilent Technologies E5071C

Related product manuals