EasyManuals Logo

Intel ARCHITECTURE IA-32 User Manual

Intel ARCHITECTURE IA-32
568 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #370 background imageLoading...
Page #370 background image
IA-32 Intel® Architecture Optimization
7-24
Example 7-4 Spin-wait Loop and PAUSE Instructions
(a) An un-optimized spin-wait loop experiences performance penalty when exiting
the loop. It consumes execution resources without contributing computational
work.
do {
// This loop can run faster than the speed of memory access,
// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.
} while( sync_var != constant_value);
(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents
performance-penalty to the spinning thread and the worker thread
do {
_asm pause
// Ensure this loop is de-pipelined, i.e. preventing more than one
// load request to sync_var to be outstanding,
// avoiding performance penalty when the worker thread updates
// sync_var and the spinning thread exiting the loop.
}
while( sync_var != constant_value);
(c) A spin-wait loop using a “test, test-and-set” technique to determine the
availability of the synchronization variable. This technique is recommended when
writing spin-wait loops to run on IA-32 architecture processors.
Spin_Lock:
CMP lockvar, 0 ; // Check if lock is free.
JE Get_lock
PAUSE; // Short delay.
JMP Spin_Lock;
Get_Lock:
MOV EAX, 1;
XCHG EAX, lockvar; // Try to get lock.
CMP EAX, 0; // Test if successful.
JNE Spin_Lock;
Critical_Section:
<critical section code>
MOV lockvar, 0; // Release lock.

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the Intel ARCHITECTURE IA-32 and is the answer not in the manual?

Intel ARCHITECTURE IA-32 Specifications

General IconGeneral
Instruction Setx86
Instruction Set TypeCISC
Memory SegmentationSupported
Operating ModesReal mode, Protected mode, Virtual 8086 mode
Max Physical Address Size36 bits (with PAE)
Max Virtual Address Size32 bits
ArchitectureIA-32 (Intel Architecture 32-bit)
Addressable Memory4 GB (with Physical Address Extension up to 64 GB)
Floating Point Registers8 x 80-bit
MMX Registers8 x 64-bit
SSE Registers8 x 128-bit
RegistersGeneral-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP), Segment registers (CS, DS, SS, ES, FS, GS), Instruction pointer (EIP), Flags register (EFLAGS)
Floating Point UnitYes (x87)

Related product manuals