EasyManuals Logo

Texas Instruments TM4C1294NCPDT User Manual

Texas Instruments TM4C1294NCPDT
1890 pages
To Next Page IconTo Next Page
To Next Page IconTo Next Page
To Previous Page IconTo Previous Page
To Previous Page IconTo Previous Page
Page #822 background imageLoading...
Page #822 background image
11.4.1 EPI Interface Options
There are a variety of memories and peripherals that can interface to the EPI module. Table
11-2 on page 822 shows the various configurations with their maximum performance.
Table 11-2. EPI Interface Options
Maximum FrequencyInterface
60 MHzSingle SDRAM
60 MHzSingle SRAM
55 MHzSingle PSRAM without iRDY signal use
52 MHzSingle PSRAM with iRDY signal use
60 MHzFPGAs, CPLDs, etc using General Purpose Mode
40 MHzMemory configurations with 2 chip selects
20 MHzMemory configurations with 4 chip selects
11.4.2 SDRAM Mode
When activating the SDRAM mode, it is important to consider a few points:
1. Generally, it takes over 100 μs from when the mode is activated to when the first operation is
allowed. The SDRAM controller begins the SDRAM initialization sequence as soon as the mode
is selected and enabled via the EPICFG register. It is important that the GPIOs are properly
configured before the SDRAM mode is enabled, as the EPI controller is relying on the GPIO
block's ability to drive the pins immediately. As part of the initialization sequence, the LOAD
MODE REGISTER command is automatically sent to the SDRAM with a value of 0x27, which
sets a CAS latency of 2 and a full page burst length.
2. The INITSEQ bit in the EPI Status (EPISTAT) register can be checked to determine when the
initialization sequence is complete.
3. When using a frequency range and/or refresh value other than the default value, it is important
to configure the FREQ and RFSH fields in the EPI SDRAM Configuration (EPISDRAMCFG)
register shortly after activating the mode. After the 100-μs startup time, the EPI block must be
configured properly to keep the SDRAM contents stable.
4. The SLEEP bit in the EPISDRAMCFG register may be configured to put the SDRAM into a
low-power self-refreshing state. It is important to note that the SDRAM mode must not be
disabled once enabled, or else the SDRAM is no longer clocked and the contents are lost.
5. Before entering SLEEP mode, make sure all non-blocking reads and normal reads and writes
have completed. If the system is running at 30 to 50 MHz, wait 2 EPI clocks after clearing the
SLEEP bit before executing non-blocking reads, or normal reads and writes. If the system is
configured to greater than 50 MHz, wait 5 EPI clocks before read and write transactions. For
all other configurations, wait 1 EPI clock.
The SIZE field of the EPISDRAMCFG register must be configured correctly based on the amount
of SDRAM in the system.
The FREQ field must be configured according to the value that represents the range being used.
Based on the range selected, the number of external clocks used between certain operations (for
example, PRECHARGE or ACTIVATE) is determined. If a higher frequency is given than is used,
then the only downside is that the peripheral is slower (uses more cycles for these delays). If a lower
frequency is given, incorrect operation occurs.
June 18, 2014822
Texas Instruments-Production Data
External Peripheral Interface (EPI)

Table of Contents

Questions and Answers:

Question and Answer IconNeed help?

Do you have a question about the Texas Instruments TM4C1294NCPDT and is the answer not in the manual?

Texas Instruments TM4C1294NCPDT Specifications

General IconGeneral
BrandTexas Instruments
ModelTM4C1294NCPDT
CategoryMicrocontrollers
LanguageEnglish

Related product manuals